A Novel Lipid-Based MALDI-TOF Assay for the Rapid Detection of Colistin-Resistant Enterobacter Species

Smith RD, McElheny CL, Izac JR, Gardner FM, Chandler CE, Goodlett DR, Doi Y, Johnson JK, Ernst RK. Microb Sectrum 2022 Feb 2.

Enterobacter species are classified as high-priority pathogens due to high prevalence of multidrug resistance from persistent antibiotic use. For Enterobacter infections caused by multidrug-resistant isolates, colistin (polymyxin E), a last-resort antibiotic, is a potential treatment option. Treatment with colistin has been shown to lead to emergence of polymyxin resistance. The primary mechanism for colistin resistance is modification of terminal phosphate moieties of lipid A, leading to decreased membrane electronegativity and reducing colistin binding affinity. Detection of these modifications, including the addition of phosphoethanolamine and 4-amino-4-deoxy-l-arabinose (Ara4N), can be used for prediction of colistin resistance using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The objective of this study was to identify lipid A markers for colistin resistance in Enterobacter species and Klebsiella aerogenes (formerly Enterobacter aerogenes). … Continue readingA Novel Lipid-Based MALDI-TOF Assay for the Rapid Detection of Colistin-Resistant Enterobacter Species

Rapid identification of mcr-1-positive Escherichia coli from patient urine using a novel lipid-based MALDI-TOF-MS assay

Smith RD, Izac JR, Ha M, et al. Access Microbio. 2021 Dec 17

Mobilized colistin resistance (mcr) genes confer resistance to colistin, a last-resort antibiotic for multidrug-resistant Gram-negative infections. In this case report, we describe a novel lipid-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) diagnostic used to rapidly identify an mcr-1-positive Escherichia coli directly from a patient with a urinary tract infection without the need for ex vivo growth. … Continue readingRapid identification of mcr-1-positive Escherichia coli from patient urine using a novel lipid-based MALDI-TOF-MS assay

Deep-sea microbes as tools to refine the rules of innate immune pattern recognition

Gauthier AE, Chandler CE, Poli V, Gardner FM, et al. Sci Immunol. 2021 Mar 12

The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally. … Continue readingDeep-sea microbes as tools to refine the rules of innate immune pattern recognition

Colistin heteroresistance is largely undetected among carbapenem-resistant Enterobacterales in the United States

Band V, Satola S, Smith R, et al. mBio 2021 Jan 26

Heteroresistance is a form of antibiotic resistance where a bacterial strain is comprised of a minor resistant subpopulation and a majority susceptible subpopulation. We showed previously that colistin heteroresistance can mediate the failure of colistin therapy in an in vivo infection model, even for isolates designated susceptible by clinical diagnostics. We sought to characterize the extent of colistin heteroresistance among the highly drug-resistant carbapenem-resistant Enterobacterales (CRE). We screened 408 isolates for colistin heteroresistance. These isolates were collected between 2012 and 2015 in eight U.S. states as part of active surveillance for CRE. Colistin heteroresistance was detected in 10.1% (41/408) of isolates, and it was more common than conventional homogenous resistance (7.1%, 29/408). Most (93.2%, 38/41) of these heteroresistant isolates were classified as colistin susceptible by standard clinical diagnostic testing. The frequency of colistin heteroresistance was greatest in 2015, the last year of the study. This was especially true among Enterobacter isolates, of which specific species had the highest rates of heteroresistance. Among Klebsiella pneumoniae isolates, which were the majority of isolates tested, there was a closely related cluster of colistin-heteroresistant ST-258 isolates found mostly in Georgia. However, cladistic analysis revealed that, overall, there was significant diversity in the genetic backgrounds of heteroresistant K. pneumoniae isolates. These findings suggest that due to being largely undetected in the clinic, colistin heteroresistance among CRE is underappreciated in the United States. … Continue readingColistin heteroresistance is largely undetected among carbapenem-resistant Enterobacterales in the United States

Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in Yersinia pestis

Chandler CE, Harberts EM, Pelletier MR, et al. Proc Natl Acad Sci U S A 2020 Sep 15.

Immune evasion through membrane remodeling is a hallmark of Yersinia pestis pathogenesis. Yersinia remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens Yersinia pseudotuberculosis (Ypt) and Yersinia enterocolitica (Ye), as well as the causative agent of plague, Yersinia pestis (Yp). Addition of a C16 fatty acid (palmitate) to lipid A by the outer membrane acyltransferase enzyme PagP occurs in immunostimulatory Ypt and Ye strains, but not in immune-evasive Yp Analysis of Yp pagP gene sequences identified a single-nucleotide polymorphism that results in a premature stop in translation, yielding a truncated, nonfunctional enzyme. Upon repair of this polymorphism to the sequence present in Ypt and Ye, lipid A isolated from a Yp pagP+ strain synthesized two structures with the C16 fatty acids located in acyloxyacyl linkage at the 2′ and 3′ positions of the diglucosamine backbone. Structural modifications were confirmed by mass spectrometry and gas chromatography. With the genotypic restoration of PagP enzymatic activity in Yp, a significant increase in lipid A endotoxicity mediated through the MyD88 and TRIF/TRAM arms of the TLR4-signaling pathway was observed. Discovery and repair of an evolutionarily lost lipid A modifying enzyme provides evidence of lipid A as a crucial determinant in Yp infectivity, pathogenesis, and host innate immune evasion. … Continue readingEarly evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in Yersinia pestis

On-tissue derivatization of lipopolysacharide for detection of lipid A using MALDI-MSI

Yang H, Chandler CE, Jackson SN, et al. Analytical Chemistry 2020 Sep.

We developed a method to directly detect and map the Gram-negative bacterial virulence factor lipid A derived from lipopolysaccharide (LPS) by coupling acid hydrolysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). As the structure of lipid A (endotoxin) determines the innate immune outcome during infection, the ability to map its location within an infected organ or animal is needed to understand localized inflammatory responses that results during host–pathogen interactions. We previously demonstrated detection of free lipid A from infected tissue; however detection of lipid A derived from intact (smooth) LPS from host–pathogen MSI studies, proved elusive. Here, we detected LPS-derived lipid A from the Gram-negative pathogens, Escherichia coli (Ec, m/z 1797) and Pseudomonas aeruginosa (Pa, m/z 1446) using on-tissue acid hydrolysis to cleave the glycosidic linkage between the polysaccharide (core and O-antigen) and lipid A moieties of LPS. Using accurate mass methods, the ion corresponding to the major Ec and Pa lipid A species (m/z 1797 and 1446, respectively) were unambiguously discriminated from complex tissue substrates. Further, we evaluated potential delocalization and signal loss of other tissue lipids and found no evidence for either, making this LPS-to-Lipid A-MSI (LLA-MSI) method, compatible with simultaneous host–pathogen lipid imaging following acid hydrolysis. This spatially sensitive technique is the first step in mapping host-influenced de novo lipid A modifications, such as those associated with antimicrobial resistance phenotypes, during Gram-negative bacterial infection and will advance our understanding of the host–pathogen interface. … Continue readingOn-tissue derivatization of lipopolysacharide for detection of lipid A using MALDI-MSI

Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants

Kutschera A, Dawid C, Gisch N, Schmid C, et al. Science 2019 Apr 12

In plants, cell-surface immune receptors sense molecular non–self-signatures. Lipid A of Gram-negative bacterial lipopolysaccharide is considered such a non–self-signature. The receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) mediates plant immune responses to Pseudomonas and Xanthomonas but not enterobacterial lipid A or lipopolysaccharide preparations. Here, we demonstrate that synthetic and bacterial lipopolysaccharide-copurified medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) metabolites elicit LORE-dependent immunity. The mc-3-OH-FAs are sensed in a chain length– and hydroxylation-specific manner, with free (R)-3-hydroxydecanoic acid [(R)-3-OH-C10:0] representing the strongest immune elicitor. By contrast, bacterial compounds comprising mc-3-OH-acyl building blocks but devoid of free mc-3-OH-FAs—including lipid A or lipopolysaccharide, rhamnolipids, lipopeptides, and acyl-homoserine-lactones—do not trigger LORE-dependent responses. Hence, plants sense low-complexity bacterial metabolites to trigger immune responses. … Continue readingBacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants

Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship

Scott AJ, Oyler BL, Goodlett DR, Ernst RK. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov

Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited ‘toolbox’ of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this ‘toolbox’ will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. … Continue readingLipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship

Structural Modification of Lipopolysaccharide Conferred by mcr-1 in Gram-Negative ESKAPE Pathogens

Liu YY, Chandler CE, Leung LM, et al. Antimicrob Agents Chemother. 2017 May 24

mcr-1 was initially reported as the first plasmid-mediated colistin resistance gene in clinical isolates of Escherichia coli and Klebsiella pneumoniae in China and has subsequently been identified worldwide in various species of the family Enterobacteriaceae. mcr-1 encodes a phosphoethanolamine transferase, and its expression has been shown to generate phosphoethanolamine-modified bis-phosphorylated hexa-acylated lipid A in E. coli Here, we investigated the effects of mcr-1 on colistin susceptibility and on lipopolysaccharide structures in laboratory and clinical strains of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, which are often treated clinically by colistin. The effects of mcr-1 on colistin resistance were determined using MIC assays of laboratory and clinical strains of E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa Lipid A structural changes resulting from MCR-1 were analyzed by mass spectrometry. The introduction of mcr-1 led to colistin resistance in E. coli, K. pneumoniae, and A. baumannii but only moderately reduced susceptibility in P. aeruginosa. Phosphoethanolamine modification of lipid A was observed consistently for all four species. These findings highlight the risk of colistin resistance as a consequence of mcr-1 expression among ESKAPE pathogens, especially in K. pneumoniae and A. baumannii. Furthermore, the observation that lipid A structures were modified despite only modest increases in colistin MICs in some instances suggests more sophisticated surveillance methods may need to be developed to track the dissemination of mcr-1 or plasmid-mediated phosphoethanolamine transferases in general. … Continue readingStructural Modification of Lipopolysaccharide Conferred by mcr-1 in Gram-Negative ESKAPE Pathogens

Norharmane Matrix Enhances Detection of Endotoxin by MALDI-MS for Simultaneous Profiling of Pathogen, Host, and Vector Systems

Scott AJ, Flinders B, Cappell J, Liang T, Pelc RS, et al. Pathog Dis. 2016 Nov

The discovery of novel pathogenic mechanisms engaged during bacterial infections requires the evolution of advanced techniques. Here, we evaluate the dual polarity matrix norharmane (NRM) to improve detection of bacterial lipid A (endotoxin), from host and vector tissues infected with Francisella novicida (Fn). We evaluated NRM for improved detection and characterization of a wide range of lipids in both positive and negative polarities, including lipid A and phospholipids across a range of matrix-assisted laser desorption-ionization-coupled applications. NRM matrix improved the limit of detection (LOD) for monophosphoryl lipid A (MPLA) down to picogram level representing a 10-fold improvement of LOD versus 2,5-dihydroxybenzoic acid and 100-fold improvement of LOD versus 9-aminoacridine (9-AA). Improved LOD for lipid A subsequently facilitated detection of the Fn lipid A major ion (m/z 1665) from extracts of infected mouse spleen and the temperature-modified Fn lipid A at m/z 1637 from infected Dermacentor variabilis ticks. Finally, we simultaneously mapped bacterial phospholipid signatures within anFn-infected spleen along with an exclusively host-derived inositol-based phospholipid (m/z 933) demonstrating coprofiling of the host-pathogen interaction. Expanded use of NRM matrix in other infection models and endotoxin-targeting imaging experiments will improve our understanding of the lipid interactions at the host-pathogen interface. … Continue readingNorharmane Matrix Enhances Detection of Endotoxin by MALDI-MS for Simultaneous Profiling of Pathogen, Host, and Vector Systems